Difference between revisions of "Journal:The impact of extraction protocol on the chemical profile of cannabis extracts from a single cultivar"

From CannaQAWiki
Jump to navigationJump to search
(Saving and adding more.)
(Saving and adding more.)
Line 37: Line 37:
*cannabis with broad leaflets (colloquially described as ''indica'') and high cannabinoid content (i.e., CBD hemp and marijuana).
*cannabis with broad leaflets (colloquially described as ''indica'') and high cannabinoid content (i.e., CBD hemp and marijuana).


[[Tetrahydrocannabinol|Δ<sup>9</sup>-tetrahydrocannabinol]] (THC) and [[cannabidiol]] (CBD) are the most extensively studied ''Cannabis sativa'' L.-derived phytocannabinoids and are the only compounds currently available by prescription in the United States.<ref>{{Cite web |last=National Center for Complementary and Integrative Health |date=November 2019 |title=Cannabis (Marijuana) and Cannabinoids: What You Need To Know |url=https://www.nccih.nih.gov/health/cannabis-marijuana-and-cannabinoids-what-you-need-to-know |publisher=U.S. Department of Health and Human Services}}</ref> In addition to these two major neutral phytocannabinoids, acidic versions such as [[tetrahydrocannabinolic acid]] (THCA), [[cannabidiolic acid]] (CBDA), [[cannabigerolic acid]] (CBGA), and [[cannabichromenic acid]] (CBCA); minor versions such as [[cannabigerol]] (CBG), [[cannabinol]] (CBN), and [[cannabichromene]] (CBC) ; and varinic versions such as [[tetrahydrocannabivarin]] (THCV), [[cannabidivarin]] (CBDV), and cannabigerovarin (CBGV) have also exhibited promising ''in vitro'' and ''in vivo'' results for treatment of various human health conditions.<ref name=":0" /> For example, as reviewed by Franco ''et al.''<ref name=":0" />, there is preliminary evidence that these understudied bioactive compounds have anti-inflammatory, anti-microbial, anti-proliferative, anti-convulsive, and neuroprotective properties. Furthermore, these minor phytocannabinoids are emerging as potential treatment strategies for anxiety, nausea, diabetes, acne, metabolic syndrome, obesity, pain, colorectal cancer, breast cancer, and more. Finally, in addition to phytocannabinoid compounds, there are a multitude of other bioactive compounds found in cannabis, including [[terpene]]s and terpenoids<ref>{{Cite journal |last=Andrade-Ochoa |first=S. |last2=Correa-Basurto |first2=J. |last3=Rodríguez-Valdez |first3=L. M. |last4=Sánchez-Torres |first4=L. E. |last5=Nogueda-Torres |first5=B. |last6=Nevárez-Moorillón |first6=G. V. |date=2018-12 |title=In vitro and in silico studies of terpenes, terpenoids and related compounds with larvicidal and pupaecidal activity against Culex quinquefasciatus Say (Diptera: Culicidae) |url=https://bmcchem.biomedcentral.com/articles/10.1186/s13065-018-0425-2 |journal=Chemistry Central Journal |language=en |volume=12 |issue=1 |pages=53 |doi=10.1186/s13065-018-0425-2 |issn=1752-153X |pmc=PMC5945571 |pmid=29748726}}</ref><ref>{{Citation |last=Campos-Xolalpa |first=Nimsi |last2=Pérez-Gutiérrez |first2=Salud |last3=Pérez-González |first3=Cuauhtémoc |last4=Mendoza-Pérez |first4=Julia |last5=Alonso-Castro |first5=Angel Josabad |date=2018 |editor-last=Akhtar |editor-first=Mohd Sayeed |editor2-last=Swamy |editor2-first=Mallappa Kumara |title=Terpenes of the Genus Salvia: Cytotoxicity and Antitumoral Effects |url=http://link.springer.com/10.1007/978-981-10-8064-7_8 |work=Anticancer Plants: Natural Products and Biotechnological Implements |language=en |publisher=Springer Singapore |place=Singapore |pages=163–205 |doi=10.1007/978-981-10-8064-7_8 |isbn=978-981-10-8063-0 |access-date=2021-12-10}}</ref><ref>{{Citation |last=Angelini |first=Paola |last2=Tirillini |first2=Bruno |last3=Akhtar |first3=Mohd Sayeed |last4=Dimitriu |first4=Luminita |last5=Bricchi |first5=Emma |last6=Bertuzzi |first6=Gianluigi |last7=Venanzoni |first7=Roberto |date=2018 |editor-last=Akhtar |editor-first=Mohd Sayeed |editor2-last=Swamy |editor2-first=Mallappa Kumara |title=Essential Oil with Anticancer Activity: An Overview |url=http://link.springer.com/10.1007/978-981-10-8064-7_9 |work=Anticancer Plants: Natural Products and Biotechnological Implements |language=en |publisher=Springer Singapore |place=Singapore |pages=207–231 |doi=10.1007/978-981-10-8064-7_9 |isbn=978-981-10-8063-0 |access-date=2021-12-10}}</ref><ref>{{Cite journal |last=Marques |first=Franciane Martins |last2=Figueira |first2=Mariana Moreira |last3=Schmitt |first3=Elisângela Flávia Pimentel |last4=Kondratyuk |first4=Tamara P. |last5=Endringer |first5=Denise Coutinho |last6=Scherer |first6=Rodrigo |last7=Fronza |first7=Marcio |date=2019-04 |title=In vitro anti-inflammatory activity of terpenes via suppression of superoxide and nitric oxide generation and the NF-κB signalling pathway |url=http://link.springer.com/10.1007/s10787-018-0483-z |journal=Inflammopharmacology |language=en |volume=27 |issue=2 |pages=281–289 |doi=10.1007/s10787-018-0483-z |issn=0925-4692}}</ref><ref>{{Cite journal |last=Izumi |first=Erika |last2=Ueda-Nakamura |first2=Tânia |last3=Veiga |first3=Valdir F. |last4=Pinto |first4=Angelo C. |last5=Nakamura |first5=Celso Vataru |date=2012-04-12 |title=Terpenes from Copaifera Demonstrated in Vitro Antiparasitic and Synergic Activity |url=https://pubs.acs.org/doi/10.1021/jm201451h |journal=Journal of Medicinal Chemistry |language=en |volume=55 |issue=7 |pages=2994–3001 |doi=10.1021/jm201451h |issn=0022-2623}}</ref>, [[flavonoid]]s<ref>{{Cite journal |last=Eggers |first=Carly |last2=Fujitani |first2=Masaya |last3=Kato |first3=Ryuji |last4=Smid |first4=Scott |date=2019-11 |title=Novel cannabis flavonoid, cannflavin A displays both a hormetic and neuroprotective profile against amyloid β-mediated neurotoxicity in PC12 cells: Comparison with geranylated flavonoids, mimulone and diplacone |url=https://linkinghub.elsevier.com/retrieve/pii/S0006295219302990 |journal=Biochemical Pharmacology |language=en |volume=169 |pages=113609 |doi=10.1016/j.bcp.2019.08.011}}</ref><ref>{{Cite journal |last=Barrett |first=M.L. |last2=Gordon |first2=D. |last3=Evans |first3=F.J. |date=1985-06 |title=Isolation from cannabis sativa L. of cannflavin—a novel inhibitor of prostaglandin production |url=https://linkinghub.elsevier.com/retrieve/pii/0006295285903259 |journal=Biochemical Pharmacology |language=en |volume=34 |issue=11 |pages=2019–2024 |doi=10.1016/0006-2952(85)90325-9}}</ref>, [[bibenzyl]]<ref>{{Cite journal |last=Allegrone |first=Gianna |last2=Pollastro |first2=Federica |last3=Magagnini |first3=Gianmaria |last4=Taglialatela-Scafati |first4=Orazio |last5=Seegers |first5=Julia |last6=Koeberle |first6=Andreas |last7=Werz |first7=Oliver |last8=Appendino |first8=Giovanni |date=2017-03-24 |title=The Bibenzyl Canniprene Inhibits the Production of Pro-Inflammatory Eicosanoids and Selectively Accumulates in Some Cannabis sativa Strains |url=https://pubs.acs.org/doi/10.1021/acs.jnatprod.6b01126 |journal=Journal of Natural Products |language=en |volume=80 |issue=3 |pages=731–734 |doi=10.1021/acs.jnatprod.6b01126 |issn=0163-3864}}</ref>, [[stilbenoid]]s<ref>{{Cite journal |last=Guo |first=Tiantian |last2=Liu |first2=Qingchao |last3=Hou |first3=Pengbo |last4=Li |first4=Fahui |last5=Guo |first5=Shoudong |last6=Song |first6=Weiguo |last7=Zhang |first7=Hai |last8=Liu |first8=Xueying |last9=Zhang |first9=Shengyong |last10=Zhang |first10=Jianchun |last11=Ho |first11=Chi-Tang |date=2018 |title=Stilbenoids and cannabinoids from the leaves of Cannabis sativa f. sativa with potential reverse cholesterol transport activity |url=http://xlink.rsc.org/?DOI=C8FO01896K |journal=Food & Function |language=en |volume=9 |issue=12 |pages=6608–6617 |doi=10.1039/C8FO01896K |issn=2042-6496}}</ref><ref>{{Cite journal |last=Andre |first=Christelle |last2=Larondelle |first2=Yvan |last3=Evers |first3=Daniele |date=2010-02-01 |title=Dietary Antioxidants and Oxidative Stress from a Human and Plant Perspective: A Review |url=http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1573-4013&volume=6&issue=1&spage=2 |journal=Current Nutrition & Food Science |language=en |volume=6 |issue=1 |pages=2–12 |doi=10.2174/157340110790909563}}</ref>, and hydroxycinnamic acids.<ref>{{Cite journal |last=Taofiq |first=Oludemi |last2=González-Paramás |first2=Ana |last3=Barreiro |first3=Maria |last4=Ferreira |first4=Isabel |date=2017-02-13 |title=Hydroxycinnamic Acids and Their Derivatives: Cosmeceutical Significance, Challenges and Future Perspectives, a Review |url=http://www.mdpi.com/1420-3049/22/2/281 |journal=Molecules |language=en |volume=22 |issue=2 |pages=281 |doi=10.3390/molecules22020281 |issn=1420-3049 |pmc=PMC6155946 |pmid=28208818}}</ref><ref>{{Cite journal |last=Candy |first=Laure |last2=Bassil |first2=Sabina |last3=Rigal |first3=Luc |last4=Simon |first4=Valerie |last5=Raynaud |first5=Christine |date=2017-12 |title=Thermo-mechano-chemical extraction of hydroxycinnamic acids from industrial hemp by-products using a twin-screw extruder |url=https://linkinghub.elsevier.com/retrieve/pii/S0926669017305551 |journal=Industrial Crops and Products |language=en |volume=109 |pages=335–345 |doi=10.1016/j.indcrop.2017.08.044}}</ref>
[[Tetrahydrocannabinol|Δ<sup>9</sup>-tetrahydrocannabinol]] (THC) and [[cannabidiol]] (CBD) are the most extensively studied ''Cannabis sativa'' L.-derived phytocannabinoids and are the only compounds currently available by prescription in the United States.<ref>{{Cite web |last=National Center for Complementary and Integrative Health |date=November 2019 |title=Cannabis (Marijuana) and Cannabinoids: What You Need To Know |url=https://www.nccih.nih.gov/health/cannabis-marijuana-and-cannabinoids-what-you-need-to-know |publisher=U.S. Department of Health and Human Services}}</ref> In addition to these two major neutral phytocannabinoids, acidic versions such as [[tetrahydrocannabinolic acid]] (THCA), [[cannabidiolic acid]] (CBDA), [[cannabigerolic acid]] (CBGA), and [[cannabichromenic acid]] (CBCA); minor versions such as [[cannabigerol]] (CBG), [[cannabinol]] (CBN), and [[cannabichromene]] (CBC) ; and varinic versions such as [[tetrahydrocannabivarin]] (THCV), [[cannabidivarin]] (CBDV), and cannabigerovarin (CBGV) have also exhibited promising ''in vitro'' and ''in vivo'' results for treatment of various human health conditions.<ref name=":0" /> For example, as reviewed by Franco ''et al.''<ref name=":0" />, there is preliminary evidence that these understudied bioactive compounds have anti-inflammatory, anti-microbial, anti-proliferative, anti-convulsive, and neuroprotective properties. Furthermore, these minor phytocannabinoids are emerging as potential treatment strategies for anxiety, nausea, diabetes, acne, metabolic syndrome, obesity, pain, colorectal cancer, breast cancer, and more. Finally, in addition to phytocannabinoid compounds, there are a multitude of other bioactive compounds found in cannabis, including [[terpene]]s and terpenoids<ref>{{Cite journal |last=Andrade-Ochoa |first=S. |last2=Correa-Basurto |first2=J. |last3=Rodríguez-Valdez |first3=L. M. |last4=Sánchez-Torres |first4=L. E. |last5=Nogueda-Torres |first5=B. |last6=Nevárez-Moorillón |first6=G. V. |date=2018-12 |title=In vitro and in silico studies of terpenes, terpenoids and related compounds with larvicidal and pupaecidal activity against Culex quinquefasciatus Say (Diptera: Culicidae) |url=https://bmcchem.biomedcentral.com/articles/10.1186/s13065-018-0425-2 |journal=Chemistry Central Journal |language=en |volume=12 |issue=1 |pages=53 |doi=10.1186/s13065-018-0425-2 |issn=1752-153X |pmc=PMC5945571 |pmid=29748726}}</ref><ref>{{Citation |last=Campos-Xolalpa |first=Nimsi |last2=Pérez-Gutiérrez |first2=Salud |last3=Pérez-González |first3=Cuauhtémoc |last4=Mendoza-Pérez |first4=Julia |last5=Alonso-Castro |first5=Angel Josabad |date=2018 |editor-last=Akhtar |editor-first=Mohd Sayeed |editor2-last=Swamy |editor2-first=Mallappa Kumara |title=Terpenes of the Genus Salvia: Cytotoxicity and Antitumoral Effects |url=http://link.springer.com/10.1007/978-981-10-8064-7_8 |work=Anticancer Plants: Natural Products and Biotechnological Implements |language=en |publisher=Springer Singapore |place=Singapore |pages=163–205 |doi=10.1007/978-981-10-8064-7_8 |isbn=978-981-10-8063-0 |access-date=2021-12-10}}</ref><ref>{{Citation |last=Angelini |first=Paola |last2=Tirillini |first2=Bruno |last3=Akhtar |first3=Mohd Sayeed |last4=Dimitriu |first4=Luminita |last5=Bricchi |first5=Emma |last6=Bertuzzi |first6=Gianluigi |last7=Venanzoni |first7=Roberto |date=2018 |editor-last=Akhtar |editor-first=Mohd Sayeed |editor2-last=Swamy |editor2-first=Mallappa Kumara |title=Essential Oil with Anticancer Activity: An Overview |url=http://link.springer.com/10.1007/978-981-10-8064-7_9 |work=Anticancer Plants: Natural Products and Biotechnological Implements |language=en |publisher=Springer Singapore |place=Singapore |pages=207–231 |doi=10.1007/978-981-10-8064-7_9 |isbn=978-981-10-8063-0 |access-date=2021-12-10}}</ref><ref>{{Cite journal |last=Marques |first=Franciane Martins |last2=Figueira |first2=Mariana Moreira |last3=Schmitt |first3=Elisângela Flávia Pimentel |last4=Kondratyuk |first4=Tamara P. |last5=Endringer |first5=Denise Coutinho |last6=Scherer |first6=Rodrigo |last7=Fronza |first7=Marcio |date=2019-04 |title=In vitro anti-inflammatory activity of terpenes via suppression of superoxide and nitric oxide generation and the NF-κB signalling pathway |url=http://link.springer.com/10.1007/s10787-018-0483-z |journal=Inflammopharmacology |language=en |volume=27 |issue=2 |pages=281–289 |doi=10.1007/s10787-018-0483-z |issn=0925-4692}}</ref><ref name=":1">{{Cite journal |last=Izumi |first=Erika |last2=Ueda-Nakamura |first2=Tânia |last3=Veiga |first3=Valdir F. |last4=Pinto |first4=Angelo C. |last5=Nakamura |first5=Celso Vataru |date=2012-04-12 |title=Terpenes from Copaifera Demonstrated in Vitro Antiparasitic and Synergic Activity |url=https://pubs.acs.org/doi/10.1021/jm201451h |journal=Journal of Medicinal Chemistry |language=en |volume=55 |issue=7 |pages=2994–3001 |doi=10.1021/jm201451h |issn=0022-2623}}</ref>, [[flavonoid]]s<ref>{{Cite journal |last=Eggers |first=Carly |last2=Fujitani |first2=Masaya |last3=Kato |first3=Ryuji |last4=Smid |first4=Scott |date=2019-11 |title=Novel cannabis flavonoid, cannflavin A displays both a hormetic and neuroprotective profile against amyloid β-mediated neurotoxicity in PC12 cells: Comparison with geranylated flavonoids, mimulone and diplacone |url=https://linkinghub.elsevier.com/retrieve/pii/S0006295219302990 |journal=Biochemical Pharmacology |language=en |volume=169 |pages=113609 |doi=10.1016/j.bcp.2019.08.011}}</ref><ref>{{Cite journal |last=Barrett |first=M.L. |last2=Gordon |first2=D. |last3=Evans |first3=F.J. |date=1985-06 |title=Isolation from cannabis sativa L. of cannflavin—a novel inhibitor of prostaglandin production |url=https://linkinghub.elsevier.com/retrieve/pii/0006295285903259 |journal=Biochemical Pharmacology |language=en |volume=34 |issue=11 |pages=2019–2024 |doi=10.1016/0006-2952(85)90325-9}}</ref>, [[bibenzyl]]<ref>{{Cite journal |last=Allegrone |first=Gianna |last2=Pollastro |first2=Federica |last3=Magagnini |first3=Gianmaria |last4=Taglialatela-Scafati |first4=Orazio |last5=Seegers |first5=Julia |last6=Koeberle |first6=Andreas |last7=Werz |first7=Oliver |last8=Appendino |first8=Giovanni |date=2017-03-24 |title=The Bibenzyl Canniprene Inhibits the Production of Pro-Inflammatory Eicosanoids and Selectively Accumulates in Some Cannabis sativa Strains |url=https://pubs.acs.org/doi/10.1021/acs.jnatprod.6b01126 |journal=Journal of Natural Products |language=en |volume=80 |issue=3 |pages=731–734 |doi=10.1021/acs.jnatprod.6b01126 |issn=0163-3864}}</ref>, [[stilbenoid]]s<ref>{{Cite journal |last=Guo |first=Tiantian |last2=Liu |first2=Qingchao |last3=Hou |first3=Pengbo |last4=Li |first4=Fahui |last5=Guo |first5=Shoudong |last6=Song |first6=Weiguo |last7=Zhang |first7=Hai |last8=Liu |first8=Xueying |last9=Zhang |first9=Shengyong |last10=Zhang |first10=Jianchun |last11=Ho |first11=Chi-Tang |date=2018 |title=Stilbenoids and cannabinoids from the leaves of Cannabis sativa f. sativa with potential reverse cholesterol transport activity |url=http://xlink.rsc.org/?DOI=C8FO01896K |journal=Food & Function |language=en |volume=9 |issue=12 |pages=6608–6617 |doi=10.1039/C8FO01896K |issn=2042-6496}}</ref><ref>{{Cite journal |last=Andre |first=Christelle |last2=Larondelle |first2=Yvan |last3=Evers |first3=Daniele |date=2010-02-01 |title=Dietary Antioxidants and Oxidative Stress from a Human and Plant Perspective: A Review |url=http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1573-4013&volume=6&issue=1&spage=2 |journal=Current Nutrition & Food Science |language=en |volume=6 |issue=1 |pages=2–12 |doi=10.2174/157340110790909563}}</ref>, and hydroxycinnamic acids.<ref>{{Cite journal |last=Taofiq |first=Oludemi |last2=González-Paramás |first2=Ana |last3=Barreiro |first3=Maria |last4=Ferreira |first4=Isabel |date=2017-02-13 |title=Hydroxycinnamic Acids and Their Derivatives: Cosmeceutical Significance, Challenges and Future Perspectives, a Review |url=http://www.mdpi.com/1420-3049/22/2/281 |journal=Molecules |language=en |volume=22 |issue=2 |pages=281 |doi=10.3390/molecules22020281 |issn=1420-3049 |pmc=PMC6155946 |pmid=28208818}}</ref><ref>{{Cite journal |last=Candy |first=Laure |last2=Bassil |first2=Sabina |last3=Rigal |first3=Luc |last4=Simon |first4=Valerie |last5=Raynaud |first5=Christine |date=2017-12 |title=Thermo-mechano-chemical extraction of hydroxycinnamic acids from industrial hemp by-products using a twin-screw extruder |url=https://linkinghub.elsevier.com/retrieve/pii/S0926669017305551 |journal=Industrial Crops and Products |language=en |volume=109 |pages=335–345 |doi=10.1016/j.indcrop.2017.08.044}}</ref>
 
There is a growing body of work exploring cannabis polypharmacy in terms of potential synergistic effects, commonly referred to as the [[entourage effect]], that may contribute to or modulate the therapeutic properties of cannabis extracts. Synergistic effects have been proposed in research exploring combinations of phytocannabinoids<ref>{{Cite journal |last=Russo |first=Ethan B. |date=2019-01-09 |title=The Case for the Entourage Effect and Conventional Breeding of Clinical Cannabis: No “Strain,” No Gain |url=https://www.frontiersin.org/article/10.3389/fpls.2018.01969/full |journal=Frontiers in Plant Science |volume=9 |pages=1969 |doi=10.3389/fpls.2018.01969 |issn=1664-462X |pmc=PMC6334252 |pmid=30687364}}</ref><ref>{{Cite journal |last=Nallathambi |first=Rameshprabu |last2=Mazuz |first2=Moran |last3=Namdar |first3=Dvory |last4=Shik |first4=Michal |last5=Namintzer |first5=Diana |last6=Vinayaka |first6=Ajjampura C. |last7=Ion |first7=Aurel |last8=Faigenboim |first8=Adi |last9=Nasser |first9=Ahmad |last10=Laish |first10=Ido |last11=Konikoff |first11=Fred M. |date=2018-06 |title=Identification of Synergistic Interaction Between Cannabis-Derived Compounds for Cytotoxic Activity in Colorectal Cancer Cell Lines and Colon Polyps That Induces Apoptosis-Related Cell Death and Distinct Gene Expression |url=http://www.liebertpub.com/doi/10.1089/can.2018.0010 |journal=Cannabis and Cannabinoid Research |language=en |volume=3 |issue=1 |pages=120–135 |doi=10.1089/can.2018.0010 |issn=2378-8763 |pmc=PMC6038055 |pmid=29992185}}</ref>, as well as other bioactive secondary metabolites such as terpenes and/or terpenoids.<ref>{{Cite journal |last=Russo |first=Ethan B |date=2011-08 |title=Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects: Phytocannabinoid-terpenoid entourage effects |url=https://onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2011.01238.x |journal=British Journal of Pharmacology |language=en |volume=163 |issue=7 |pages=1344–1364 |doi=10.1111/j.1476-5381.2011.01238.x |pmc=PMC3165946 |pmid=21749363}}</ref><ref>{{Cite journal |last=Koltai |first=Hinanit |last2=Poulin |first2=Patrick |last3=Namdar |first3=Dvory |date=2019-04 |title=Promoting cannabis products to pharmaceutical drugs |url=https://linkinghub.elsevier.com/retrieve/pii/S0928098719300880 |journal=European Journal of Pharmaceutical Sciences |language=en |volume=132 |pages=118–120 |doi=10.1016/j.ejps.2019.02.027}}</ref> This has also been shown with human endocannabinoids ''in vitro'', though ''in vivo'' studies are notably lacking. For example, it has been demonstrated that the endocannabinoid 2-arachidonoylglycerol shows enhanced activity in the presence of 2-acylglycerol esters, which alone are inactive.<ref>{{Cite journal |last=Ben-Shabat |first=Shimon |last2=Fride |first2=Ester |last3=Sheskin |first3=Tzviel |last4=Tamiri |first4=Tsippy |last5=Rhee |first5=Man-Hee |last6=Vogel |first6=Zvi |last7=Bisogno |first7=Tiziana |last8=De Petrocellis |first8=Luciano |last9=Di Marzo |first9=Vincenzo |last10=Mechoulam |first10=Raphael |date=1998-07 |title=An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity |url=https://linkinghub.elsevier.com/retrieve/pii/S0014299998003926 |journal=European Journal of Pharmacology |language=en |volume=353 |issue=1 |pages=23–31 |doi=10.1016/S0014-2999(98)00392-6}}</ref> This effect has also been noted for organisms other than cannabis. Combining multiple terpenes from a tropical Amazonian plant was demonstrated to have a synergistic effect that was more toxic to a parasite than the terpenes alone<ref name=":1" />, and combining multiple terpenes was more effective at inhibiting growth of a protozoa than the terpenes alone.<ref>{{Cite journal |last=Azeredo |first=Camila M.O. |last2=Soares |first2=Maurilio J. |date=2013-09 |title=Combination of the essential oil constituents citral, eugenol and thymol enhance their inhibitory effect on Crithidia fasciculata and Trypanosoma cruzi growth |url=https://linkinghub.elsevier.com/retrieve/pii/S0102695X13701029 |journal=Revista Brasileira de Farmacognosia |language=en |volume=23 |issue=5 |pages=762–768 |doi=10.1590/S0102-695X2013000500007}}</ref> Conversely, there is also some evidence suggesting that cannabis polypharmacy could results in negative interactions or potential toxicity.<ref>{{Cite journal |last=Cogan |first=Peter S. |date=2020-08-02 |title=The ‘entourage effect’ or ‘hodge-podge hashish’: the questionable rebranding, marketing, and expectations of cannabis polypharmacy |url=https://www.tandfonline.com/doi/full/10.1080/17512433.2020.1721281 |journal=Expert Review of Clinical Pharmacology |language=en |volume=13 |issue=8 |pages=835–845 |doi=10.1080/17512433.2020.1721281 |issn=1751-2433}}</ref>


==References==
==References==

Revision as of 21:48, 10 December 2021

Full article title The impact of extraction protocol on the chemical profile of cannabis extracts from a single cultivar
Journal Scientific Reports
Author(s) Bowen, Janina K.; Chaparro, Jacqueline M.; McCorkle, Alexander M.; Palumbo, Edward; Prenni, Jessica E.
Author affiliation(s) Colorado State University, Charlotte’s Web Inc.
Primary contact jprenni at colostate dot edu
Year published 2021
Volume and issue 11
Article # 21801
DOI 10.1038/s41598-021-01378-0
ISSN 2045-2322
Distribution license Creative Commons Attribution 4.0 International
Website https://www.nature.com/articles/s41598-021-01378-0
Download https://www.nature.com/articles/s41598-021-01378-0.pdf (PDF)

Abstract

The last two decades have seen a dramatic shift in cannabis legislation around the world. Cannabis products are now widely available, and commercial production and use of phytocannabinoid products is rapidly growing. However, this growth is outpacing the research needed to elucidate the therapeutic efficacy of the myriad of chemical compounds found primarily in the flower of the female Cannabis plant. This lack of research and corresponding regulation has resulted in processing methods, products, and terminology that are variable and confusing for consumers. Importantly, the impact of processing methods on the resulting chemical profile of full spectrum cannabis extracts is not well understood. As a first step in addressing this knowledge gap, we have utilized a combination of analytical approaches to characterize the broad chemical composition of a single cannabis cultivar that was processed using previously optimized and commonly used commercial extraction protocols, including alcoholic solvents and supercritical carbon dioxide. Significant variation in the bioactive chemical profile was observed in the extracts resulting from the different protocols, demonstrating the need for further research regarding the influence of processing on therapeutic efficacy, as well as the importance of labeling in the marketing of multi-component cannabis products.

Keywords: Cannabis, processing methods, extract, cultivar, chemical analysis

Introduction

Cannabis sativa L. is a pharmacologically important annual plant that produces bioactive phytocannabinoids and other secondary metabolites that have demonstrated therapeutic potential for a wide variety of human health conditions.[1][2][3][4][5] Cannabis sativa L. can be broadly divided into three categories based on genomic diversity and chemical composition.[6] Specifically, based on the analysis of 340 cannabis varieties—including grain hemp, fiber hemp, CBD hemp, marijuana, and feral populations—the distinct groups were described as:

  • fiber/grain hemp with low cannabinoid content;
  • cannabis with narrow leaflets (colloquially described as sativa) and high cannabinoid content (i.e., CBD hemp and marijuana); and
  • cannabis with broad leaflets (colloquially described as indica) and high cannabinoid content (i.e., CBD hemp and marijuana).

Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most extensively studied Cannabis sativa L.-derived phytocannabinoids and are the only compounds currently available by prescription in the United States.[7] In addition to these two major neutral phytocannabinoids, acidic versions such as tetrahydrocannabinolic acid (THCA), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), and cannabichromenic acid (CBCA); minor versions such as cannabigerol (CBG), cannabinol (CBN), and cannabichromene (CBC) ; and varinic versions such as tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), and cannabigerovarin (CBGV) have also exhibited promising in vitro and in vivo results for treatment of various human health conditions.[4] For example, as reviewed by Franco et al.[4], there is preliminary evidence that these understudied bioactive compounds have anti-inflammatory, anti-microbial, anti-proliferative, anti-convulsive, and neuroprotective properties. Furthermore, these minor phytocannabinoids are emerging as potential treatment strategies for anxiety, nausea, diabetes, acne, metabolic syndrome, obesity, pain, colorectal cancer, breast cancer, and more. Finally, in addition to phytocannabinoid compounds, there are a multitude of other bioactive compounds found in cannabis, including terpenes and terpenoids[8][9][10][11][12], flavonoids[13][14], bibenzyl[15], stilbenoids[16][17], and hydroxycinnamic acids.[18][19]

There is a growing body of work exploring cannabis polypharmacy in terms of potential synergistic effects, commonly referred to as the entourage effect, that may contribute to or modulate the therapeutic properties of cannabis extracts. Synergistic effects have been proposed in research exploring combinations of phytocannabinoids[20][21], as well as other bioactive secondary metabolites such as terpenes and/or terpenoids.[22][23] This has also been shown with human endocannabinoids in vitro, though in vivo studies are notably lacking. For example, it has been demonstrated that the endocannabinoid 2-arachidonoylglycerol shows enhanced activity in the presence of 2-acylglycerol esters, which alone are inactive.[24] This effect has also been noted for organisms other than cannabis. Combining multiple terpenes from a tropical Amazonian plant was demonstrated to have a synergistic effect that was more toxic to a parasite than the terpenes alone[12], and combining multiple terpenes was more effective at inhibiting growth of a protozoa than the terpenes alone.[25] Conversely, there is also some evidence suggesting that cannabis polypharmacy could results in negative interactions or potential toxicity.[26]

References

  1. Whiting, Penny F.; Wolff, Robert F.; Deshpande, Sohan; Di Nisio, Marcello; Duffy, Steven; Hernandez, Adrian V.; Keurentjes, J. Christiaan; Lang, Shona et al. (23 June 2015). "Cannabinoids for Medical Use: A Systematic Review and Meta-analysis" (in en). JAMA 313 (24): 2456–73. doi:10.1001/jama.2015.6358. ISSN 0098-7484. http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2015.6358. 
  2. Larsen, Christian; Shahinas, Jorida (2020). "Dosage, Efficacy and Safety of Cannabidiol Administration in Adults: A Systematic Review of Human Trials" (in en). Journal of Clinical Medicine Research 12 (3): 129–141. doi:10.14740/jocmr4090. ISSN 1918-3003. PMC PMC7092763. PMID 32231748. http://www.jocmr.org/index.php/JOCMR/article/view/4090. 
  3. Ferber, Sari Goldstein; Namdar, Dvora; Hen-Shoval, Danielle; Eger, Gilad; Koltai, Hinanit; Shoval, Gal; Shbiro, Liat; Weller, Aron (23 January 2020). "The “Entourage Effect”: Terpenes Coupled with Cannabinoids for the Treatment of Mood Disorders and Anxiety Disorders" (in en). Current Neuropharmacology 18 (2): 87–96. doi:10.2174/1570159X17666190903103923. PMC PMC7324885. PMID 31481004. http://www.eurekaselect.com/174648/article. 
  4. 4.0 4.1 4.2 Franco, Rafael; Rivas-Santisteban, Rafael; Reyes-Resina, Irene; Casanovas, Mireia; Pérez-Olives, Catalina; Ferreiro-Vera, Carlos; Navarro, Gemma; Sánchez de Medina, Verónica et al. (1 August 2020). "Pharmacological potential of varinic-, minor-, and acidic phytocannabinoids" (in en). Pharmacological Research 158: 104801. doi:10.1016/j.phrs.2020.104801. https://linkinghub.elsevier.com/retrieve/pii/S1043661820311099. 
  5. Gonçalves, Joana; Rosado, Tiago; Soares, Sofia; Simão, Ana; Caramelo, Débora; Luís, Ângelo; Fernández, Nicolás; Barroso, Mário et al. (23 February 2019). "Cannabis and Its Secondary Metabolites: Their Use as Therapeutic Drugs, Toxicological Aspects, and Analytical Determination" (in en). Medicines 6 (1): 31. doi:10.3390/medicines6010031. ISSN 2305-6320. PMC PMC6473697. PMID 30813390. http://www.mdpi.com/2305-6320/6/1/31. 
  6. Lynch, Ryan C.; Vergara, Daniela; Tittes, Silas; White, Kristin; Schwartz, C. J.; Gibbs, Matthew J.; Ruthenburg, Travis C.; deCesare, Kymron et al. (1 November 2016). "Genomic and Chemical Diversity in Cannabis" (in en). Critical Reviews in Plant Sciences 35 (5-6): 349–363. doi:10.1080/07352689.2016.1265363. ISSN 0735-2689. https://www.tandfonline.com/doi/full/10.1080/07352689.2016.1265363. 
  7. National Center for Complementary and Integrative Health (November 2019). "Cannabis (Marijuana) and Cannabinoids: What You Need To Know". U.S. Department of Health and Human Services. https://www.nccih.nih.gov/health/cannabis-marijuana-and-cannabinoids-what-you-need-to-know. 
  8. Andrade-Ochoa, S.; Correa-Basurto, J.; Rodríguez-Valdez, L. M.; Sánchez-Torres, L. E.; Nogueda-Torres, B.; Nevárez-Moorillón, G. V. (1 December 2018). "In vitro and in silico studies of terpenes, terpenoids and related compounds with larvicidal and pupaecidal activity against Culex quinquefasciatus Say (Diptera: Culicidae)" (in en). Chemistry Central Journal 12 (1): 53. doi:10.1186/s13065-018-0425-2. ISSN 1752-153X. PMC PMC5945571. PMID 29748726. https://bmcchem.biomedcentral.com/articles/10.1186/s13065-018-0425-2. 
  9. Campos-Xolalpa, Nimsi; Pérez-Gutiérrez, Salud; Pérez-González, Cuauhtémoc; Mendoza-Pérez, Julia; Alonso-Castro, Angel Josabad (2018), Akhtar, Mohd Sayeed; Swamy, Mallappa Kumara, eds., "Terpenes of the Genus Salvia: Cytotoxicity and Antitumoral Effects" (in en), Anticancer Plants: Natural Products and Biotechnological Implements (Singapore: Springer Singapore): 163–205, doi:10.1007/978-981-10-8064-7_8, ISBN 978-981-10-8063-0, http://link.springer.com/10.1007/978-981-10-8064-7_8. Retrieved 2021-12-10 
  10. Angelini, Paola; Tirillini, Bruno; Akhtar, Mohd Sayeed; Dimitriu, Luminita; Bricchi, Emma; Bertuzzi, Gianluigi; Venanzoni, Roberto (2018), Akhtar, Mohd Sayeed; Swamy, Mallappa Kumara, eds., "Essential Oil with Anticancer Activity: An Overview" (in en), Anticancer Plants: Natural Products and Biotechnological Implements (Singapore: Springer Singapore): 207–231, doi:10.1007/978-981-10-8064-7_9, ISBN 978-981-10-8063-0, http://link.springer.com/10.1007/978-981-10-8064-7_9. Retrieved 2021-12-10 
  11. Marques, Franciane Martins; Figueira, Mariana Moreira; Schmitt, Elisângela Flávia Pimentel; Kondratyuk, Tamara P.; Endringer, Denise Coutinho; Scherer, Rodrigo; Fronza, Marcio (1 April 2019). "In vitro anti-inflammatory activity of terpenes via suppression of superoxide and nitric oxide generation and the NF-κB signalling pathway" (in en). Inflammopharmacology 27 (2): 281–289. doi:10.1007/s10787-018-0483-z. ISSN 0925-4692. http://link.springer.com/10.1007/s10787-018-0483-z. 
  12. 12.0 12.1 Izumi, Erika; Ueda-Nakamura, Tânia; Veiga, Valdir F.; Pinto, Angelo C.; Nakamura, Celso Vataru (12 April 2012). "Terpenes from Copaifera Demonstrated in Vitro Antiparasitic and Synergic Activity" (in en). Journal of Medicinal Chemistry 55 (7): 2994–3001. doi:10.1021/jm201451h. ISSN 0022-2623. https://pubs.acs.org/doi/10.1021/jm201451h. 
  13. Eggers, Carly; Fujitani, Masaya; Kato, Ryuji; Smid, Scott (1 November 2019). "Novel cannabis flavonoid, cannflavin A displays both a hormetic and neuroprotective profile against amyloid β-mediated neurotoxicity in PC12 cells: Comparison with geranylated flavonoids, mimulone and diplacone" (in en). Biochemical Pharmacology 169: 113609. doi:10.1016/j.bcp.2019.08.011. https://linkinghub.elsevier.com/retrieve/pii/S0006295219302990. 
  14. Barrett, M.L.; Gordon, D.; Evans, F.J. (1 June 1985). "Isolation from cannabis sativa L. of cannflavin—a novel inhibitor of prostaglandin production" (in en). Biochemical Pharmacology 34 (11): 2019–2024. doi:10.1016/0006-2952(85)90325-9. https://linkinghub.elsevier.com/retrieve/pii/0006295285903259. 
  15. Allegrone, Gianna; Pollastro, Federica; Magagnini, Gianmaria; Taglialatela-Scafati, Orazio; Seegers, Julia; Koeberle, Andreas; Werz, Oliver; Appendino, Giovanni (24 March 2017). "The Bibenzyl Canniprene Inhibits the Production of Pro-Inflammatory Eicosanoids and Selectively Accumulates in Some Cannabis sativa Strains" (in en). Journal of Natural Products 80 (3): 731–734. doi:10.1021/acs.jnatprod.6b01126. ISSN 0163-3864. https://pubs.acs.org/doi/10.1021/acs.jnatprod.6b01126. 
  16. Guo, Tiantian; Liu, Qingchao; Hou, Pengbo; Li, Fahui; Guo, Shoudong; Song, Weiguo; Zhang, Hai; Liu, Xueying et al. (2018). "Stilbenoids and cannabinoids from the leaves of Cannabis sativa f. sativa with potential reverse cholesterol transport activity" (in en). Food & Function 9 (12): 6608–6617. doi:10.1039/C8FO01896K. ISSN 2042-6496. http://xlink.rsc.org/?DOI=C8FO01896K. 
  17. Andre, Christelle; Larondelle, Yvan; Evers, Daniele (1 February 2010). "Dietary Antioxidants and Oxidative Stress from a Human and Plant Perspective: A Review" (in en). Current Nutrition & Food Science 6 (1): 2–12. doi:10.2174/157340110790909563. http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1573-4013&volume=6&issue=1&spage=2. 
  18. Taofiq, Oludemi; González-Paramás, Ana; Barreiro, Maria; Ferreira, Isabel (13 February 2017). "Hydroxycinnamic Acids and Their Derivatives: Cosmeceutical Significance, Challenges and Future Perspectives, a Review" (in en). Molecules 22 (2): 281. doi:10.3390/molecules22020281. ISSN 1420-3049. PMC PMC6155946. PMID 28208818. http://www.mdpi.com/1420-3049/22/2/281. 
  19. Candy, Laure; Bassil, Sabina; Rigal, Luc; Simon, Valerie; Raynaud, Christine (1 December 2017). "Thermo-mechano-chemical extraction of hydroxycinnamic acids from industrial hemp by-products using a twin-screw extruder" (in en). Industrial Crops and Products 109: 335–345. doi:10.1016/j.indcrop.2017.08.044. https://linkinghub.elsevier.com/retrieve/pii/S0926669017305551. 
  20. Russo, Ethan B. (9 January 2019). "The Case for the Entourage Effect and Conventional Breeding of Clinical Cannabis: No “Strain,” No Gain". Frontiers in Plant Science 9: 1969. doi:10.3389/fpls.2018.01969. ISSN 1664-462X. PMC PMC6334252. PMID 30687364. https://www.frontiersin.org/article/10.3389/fpls.2018.01969/full. 
  21. Nallathambi, Rameshprabu; Mazuz, Moran; Namdar, Dvory; Shik, Michal; Namintzer, Diana; Vinayaka, Ajjampura C.; Ion, Aurel; Faigenboim, Adi et al. (1 June 2018). "Identification of Synergistic Interaction Between Cannabis-Derived Compounds for Cytotoxic Activity in Colorectal Cancer Cell Lines and Colon Polyps That Induces Apoptosis-Related Cell Death and Distinct Gene Expression" (in en). Cannabis and Cannabinoid Research 3 (1): 120–135. doi:10.1089/can.2018.0010. ISSN 2378-8763. PMC PMC6038055. PMID 29992185. http://www.liebertpub.com/doi/10.1089/can.2018.0010. 
  22. Russo, Ethan B (1 August 2011). "Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects: Phytocannabinoid-terpenoid entourage effects" (in en). British Journal of Pharmacology 163 (7): 1344–1364. doi:10.1111/j.1476-5381.2011.01238.x. PMC PMC3165946. PMID 21749363. https://onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2011.01238.x. 
  23. Koltai, Hinanit; Poulin, Patrick; Namdar, Dvory (1 April 2019). "Promoting cannabis products to pharmaceutical drugs" (in en). European Journal of Pharmaceutical Sciences 132: 118–120. doi:10.1016/j.ejps.2019.02.027. https://linkinghub.elsevier.com/retrieve/pii/S0928098719300880. 
  24. Ben-Shabat, Shimon; Fride, Ester; Sheskin, Tzviel; Tamiri, Tsippy; Rhee, Man-Hee; Vogel, Zvi; Bisogno, Tiziana; De Petrocellis, Luciano et al. (1 July 1998). "An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity" (in en). European Journal of Pharmacology 353 (1): 23–31. doi:10.1016/S0014-2999(98)00392-6. https://linkinghub.elsevier.com/retrieve/pii/S0014299998003926. 
  25. Azeredo, Camila M.O.; Soares, Maurilio J. (1 September 2013). "Combination of the essential oil constituents citral, eugenol and thymol enhance their inhibitory effect on Crithidia fasciculata and Trypanosoma cruzi growth" (in en). Revista Brasileira de Farmacognosia 23 (5): 762–768. doi:10.1590/S0102-695X2013000500007. https://linkinghub.elsevier.com/retrieve/pii/S0102695X13701029. 
  26. Cogan, Peter S. (2 August 2020). "The ‘entourage effect’ or ‘hodge-podge hashish’: the questionable rebranding, marketing, and expectations of cannabis polypharmacy" (in en). Expert Review of Clinical Pharmacology 13 (8): 835–845. doi:10.1080/17512433.2020.1721281. ISSN 1751-2433. https://www.tandfonline.com/doi/full/10.1080/17512433.2020.1721281. 

Notes

This presentation is faithful to the original, with only a few minor changes to presentation. Some grammar and punctuation was cleaned up to improve readability. In some cases important information was missing from the references, and that information was added.