Journal:Cannabinoid, terpene, and heavy metal analysis of 29 over-the-counter commercial veterinary hemp supplements

From CannaQAWiki
Revision as of 18:04, 3 December 2020 by Shawndouglas (talk | contribs) (Saving and adding more.)
Jump to navigationJump to search
Full article title Cannabinoid, terpene, and heavy metal analysis of 29 over-the-counter commercial veterinary hemp supplements
Journal Veterinary Medicine: Research and Reports
Author(s) Wakshlag, Joseph J.; Cital, Stephen; Eaton, Scott J.; Prussin, Reece; Hudalla, Christopher
Author affiliation(s) Cornell University College of Veterinary Medicine, ElleVet Sciences, ProVerde Laboratories
Primary contact Email: Dr dot joesh at gmail dot com
Year published 2020
Volume and issue 11
Page(s) 45–55
DOI 10.2147/VMRR.S248712
ISSN 2230-2034
Distribution license Creative Commons Attribution-NonCommercial 3.0 Unported
Website https://www.dovepress.com/cannabinoid-terpene-and-heavy-metal-analysis-of-29-over-the-counter-co
Download https://www.dovepress.com/getfile.php?fileID=57398 (PDF)

Abstract

Purpose: The use of veterinary low-tetrahydrocannabinol (THC) Cannabis sativa (i.e., hemp) products has increased in popularity for a variety of pet ailments. Low-THC Cannabis sativa is federally legal for sale and distribution in the United States, and the rise in internet commerce has provided access to interested consumers, with minimal quality control.

Materials and methods: We performed an internet word search of “hemp extract and dog” or “CBD product and dog” and analyzed 29 products that were using low-THC Cannabis sativa extracts in their production of supplements. All products were tested for major cannabinoids, including ∆9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabigerol (CBG), and other minor cannabinoids, as well as their respective carboxylic acid derivatives tetrahydrocannabinolic acid (THCA), cannabidiolic acid (CBDA), and cannabigerolic acid (CBGA) using an ISO/IEC 17025-certified laboratory. Products were also tested for major terpenes and heavy metals to understand constituents in the hemp plants being extracted and distributed.

Results: All products were below the federal limit of 0.3% THC, with variable amounts of CBD (0– 88 mg/mL or g). Only two products did not supply a CBD or total cannabinoid concentration on their packaging or website, while 22 of 29 had an associated certificate of analysis (COA) from a third-party laboratory. Ten of the 27 products were within 10% of the total cannabinoid concentrations of their label claim, with a median concentration of 93% of claims (0– 154%). Heavy metal contamination was found in four of 29 products, with lead being the most prevalent contaminant (three of 29).

Conclusion: The products analyzed had highly variable concentrations of CBD or total cannabinoids, with only 18 of 29 being appropriately labeled according to current Food and Drug Administration (FDA) non-medication, non-dietary supplement, or non-food guidelines. Owners and veterinarians wanting to utilize CBD-rich Cannabis sativa products should be aware of low-concentration products and should obtain a COA enabling them to fully discuss the implications of use and calculated dosing before administering to pets.

Keywords: cannabinoid, hemp, supplement, cannabidiol, pet, terpene, oral

Introduction

The recent federal legalization and deregulation of low-tetrahydrocannabinol (THC) Cannabis sativa, otherwise known as hemp, as a commercial crop in the United States has created a new supplement market for humans and pets alike that is largely unregulated.[1] The de-scheduling of low-THC Cannabis sativa-derived extracts forced any oversight of products containing hemp-derived cannabidiol (CBD), and other cannabinoids, to the Food and Drug Administration (FDA).[2] The lack of clear FDA regulations and inconsistent state regulations being implemented leaves many practitioners contemplating the legality of low-THC Cannabis sativa distribution in each state, even though federally legal. Some associations and organizations refer to the Dietary Supplement Health and Education Act of 1994 (DSHEA) for guidelines regarding marketing and labeling of Cannabis sativa-derived CBD products, when in fact the U.S. Congress clarified the intent of DSHEA as not relevant to animals.[3] Instead, this lack of oversight responsibility has left a legal gray zone where animal supplements are not illegal, but are self-regulated with enforcement discretion maintained by the FDA. The FDA currently only oversees three defined categories when it comes to animal products: medicines, medical devices, and food.

Currently, at the time of writing, compliant labeling and marketing of low-THC CBD products must not state or imply the prevention, mitigation, or curing of disease. This mandate mirrors all other human or animal supplements and nutraceuticals on the market today. Until the FDA resolves the issue regarding guidelines of “hemp” CBD products, many manufacturers will likely continue illegal and dishonest marketing and labeling, possibly weighing the earning potential against the unlikely event of FDA enforcement in a saturated market.

The use of CBD-rich extracts on pets is commonplace, as identified by Kogan et al. in a range of survey work, leaving veterinarians in a tenuous place as health professionals, particularly due to the paucity of clinical or safety studies. Client survey work suggests that CBD-rich Cannabis extracts are currently being used to treat a variety of disorders, including anxiety, cancer and cancer chemotherapy side effects, inflammatory bowel disease, osteoarthritis, and seizures.[4][5] CBD is the primary cannabinoid of interest due to the tremendous amount of pre-clinical and human clinical research suggesting it may have utility in a range of inflammatory and neurologic disease processes.[6][7][8][9][10] Other cannabinoids can also be found in many of these preparations, including ∆9-tetracannabinol (THC), ∆8-tetrahydrocannabinol (∆8-THC), cannabichromene (CBC), cannabinol (CBN), cannabigerol (CBG), cannabidivarin (CBDV), exo-THC, tetrahydrocannabivarin (THCV), and all their derived acids, such as tetrahydrocannabinolic acid (THCA), cannabidiolic acid (CBDA), and cannabigerolic acid (CBGA), as well as terpenes. Terpenes are a class of mono- and dicyclical volatile compounds that lead to the aroma of the extract and may also have modest medicinal properties, but they are typically found at lower concentrations than cannabinoids (less than 1% dry weight of plant material).[11]

References

  1. "Public Law 115 - 334 - Agriculture Improvement Act of 2018". govinfo. United States Government Publishing Office. 20 December 2018. https://www.govinfo.gov/app/details/PLAW-115publ334. 
  2. Food and Drug Administration (2020). "FDA Regulation of Cannabis and Cannabis-Derived Products, Including Cannabidiol (CBD)". Food and Drug Administration. https://www.fda.gov/news-events/public-health-focus/fda-regulation-cannabis-and-cannabis-derived-products-including-cannabidiol-cbd. Retrieved 27 March 2020. 
  3. "S.784 - Dietary Supplement Health and Education Act of 1994". Congress.gov. 25 October 1994. https://www.congress.gov/bill/103rd-congress/senate-bill/784. 
  4. Kogan, L.R.; Hellyer, P.W.; Robinson, N.G. (2016). "Consumers' Perceptions of Hemp Products for Animals" (PDF). Journal of the American Holistic Veterinary Medical Association 42 (Spring): 40–48. https://www.ahvma.org/wp-content/uploads/AHVMA-2016-V42-Hemp-Article.pdf. 
  5. Kogan, L.R.; Hellyer, P.W.; Silcox, S. et al. (2019). "Canadian dog owners' use and perceptions of cannabis products". Canadian Veterinary Journal 60 (7): 749–55. PMC PMC6563876. PMID 31281193. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=PMC6563876. 
  6. Izzo, A.A.; Borrelli, F.; Capasso, R. et al. (2009). "Non-psychotropic plant cannabinoids: New therapeutic opportunities from an ancient herbs". Trends in Pharmacological Sciences 30 (10): 515–27. doi:10.1016/j.tips.2009.07.006. PMID 19729208. 
  7. White, C.M. (2019). "A Review of Human Studies Assessing Cannabidiol's (CBD) Therapeutic Actions and Potential". Journal of Clinical Pharmacology 59 (7): 923–34. doi:10.1002/jcph.1387. PMID 30730563. 
  8. Landa, L.; Sulcova, A.; Gbelec, P. (2016). "The use of cannabinoids in animals and therapeutic implications for veterinary medicine: A review". Veterinarni Medicina 61: 111–22. doi:10.17221/8762-VETMED. 
  9. Mastinu, A.; Ribaudo, G.; Ongaro, A. et al. (2020). "Critical Review on the Chemical Aspects of Cannabidiol (CBD) and Harmonization of Computational Bioactivity Data". Current Medicinal Chemistry. doi:10.2174/0929867327666200210144847. PMID 32039672. 
  10. Premoli, M.; Aria, F.; Bonini, S.A. et al. (2019). "Cannabidiol: Recent advances and new insights for neuropsychiatric disorders treatment". Life Sciences. doi:10.1016/j.lfs.2019.03.053. PMID 30910646. 
  11. Pavlovic, R.; Nenna, G.; Calvi, L. et al. (2018). "Quality Traits of "Cannabidiol Oils": Cannabinoids Content, Terpene Fingerprint and Oxidation Stability of European Commercially Available Preparations". Molecules. doi:10.3390/molecules23051230. PMC PMC6100014. PMID 29783790. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=PMC6100014. 

Notes

This presentation is faithful to the original, with only a few minor changes to presentation. Some grammar and punctuation was cleaned up to improve readability. In some cases important information was missing from the references, and that information was added.