Journal:Potency and safety analysis of hemp-derived delta-9 products: The hemp vs. cannabis demarcation problem

From CannaQAWiki
Revision as of 19:09, 28 November 2023 by Shawndouglas (talk | contribs) (Created stub; saving and adding more.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
Full article title Potency and safety analysis of hemp delta-9 products: The hemp vs. cannabis demarcation problem
Journal Journal of Cannabis Research
Author(s) Johnson, Lee; Malone, Marc; Paulson, Erik; Swider, Josh; Marelius, David; Andersen, Susan; Black, Dominic
Author affiliation(s) CBD Oracle, Infinite Chemical Analysis Labs
Primary contact Email: lee at cbdoracle dot com
Year published 2023
Volume and issue 5
Article # 29
DOI 10.1186/s42238-023-00197-6
ISSN 2522-5782
Distribution license Creative Commons Attribution 4.0 International
Website https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-023-00197-6
Download https://jcannabisresearch.biomedcentral.com/counter/pdf/10.1186/s42238-023-00197-6.pdf (PDF)

Abstract

Background: Hemp-derived delta-9-tetrahydrocannabinol9-THC) products are freely available for sale across much of the USA, but the federal legislation allowing their sale places only minimal requirements on companies. Products must contain no more than 0.3% Δ9-THC by dry weight, but no limit is placed on overall dosage, and there is no requirement that products derived from hemp-based Δ9-THC be tested. However, some states—such as Colorado—specifically prohibit products created by “chemically modifying” a natural hemp component.

Methods: Fifty-three hemp-based Δ9-THC products were ordered and submitted to InfiniteCAL laboratory for analysis. The lab analysis considered potency, the presence of impurities, and whether the Δ9-THC present was natural or converted from cannabidiol (CBD). The presence of age verification, company-conducted testing, and warning labels was also considered.

Results: While 96.2% of products were under the legal Δ9-THC limit, 66.0% differed from their stated dosage by more than 10%, and although 84.9% provided a lab report to customers, 71.1% of these did not check for impurities. Additionally, 49% of products converted CBD to THC to achieve their levels, and only 15.1% performed age verification at checkout.

Conclusions: Despite some positive findings, the results show that hemp-derived Δ9-THC companies offer inaccurately labeled products that contain more THC than would be allowed in adult-use states. This raises serious issues around consumer safety, and consent when consuming intoxicating products. Steps to boost accountability for companies must be considered by either the industry or lawmakers if intoxicating hemp products are to safely remain on the market.

Keywords: hemp, Δ9-THC, Farm Bill, Agriculture Improvement Act, cannabinoid potency

Background

Delta-9-tetrahydrocannabinol9-THC) is the primary psychoactive component of the Cannabis sativa L. plant [Cooper and Haney 2009], with other cannabinoids like cannabidiol (CBD) attracting attention for their therapeutic properties [Russo and McPartland 2003] in recent years. [National Academies of Sciences, Engineering, and Medicine (NASEM), 2017] While both cannabinoids have medical applications, Δ9-THC has largely been associated with recreational use. Until 2012 [Conference and of State Legislatures (NCSL): State Medical Cannabis Laws 2022], the prohibition of the recreational use of cannabis in the United States has made it essentially impossible to obtain legally, except through certain medical channels.

However, things changed when the Agriculture Improvement Act of 2018 (a.k.a. the “Farm Bill”) made industrial hemp legal at the federal level. [Agriculture Improvement Act of (US), 2018] The legislation allowed for an explosion of CBD products, but there were unintended consequences. The Farm Bill removed the cannabinoids in hemp from the definition of "marijuana" in the Controlled Substances Act and defined hemp as containing less than 0.3% Δ9-THC by dry weight. [Johnson-Arbor and Smolinske 2022] This allowed non-intoxicating CBD oils, for example, to be sold freely. However, loopholes quickly emerged, such as ignoring the matter of Δ8-THC, another psychoactive compound much like Δ9-THC except with less potent and long-lasting effects [Kruger et al. 2022b] and less binding affinity for the CB1 receptor. [Tagen and Klumpers 2022] Since it is a natural component of hemp, provided that products containing it have less than 0.3% Δ9-THC by dry weight, they can contain as much Δ8-THC as they want. Some states have taken action to stop the sale and distribution of Δ8-THC [Johnson-Arbor and Smolinske 2022], but new loopholes (for example, the increase in products with hexahydrocannabinol [HHC] [Casati et al. 2022]) are identified more quickly than lawmakers can close them.

While Δ8-THC is present in negligible amounts in the Cannabis plant, virtually all products sold to consumers use Δ8-THC produced from CBD (Tagen and Klumpers 2022) by cyclization (the closure of a ring after an acid-catalyzed activation of a double bond). [Marzullo et al. 2020] This creates potential legal issues at the federal level (because it may render it “synthetic” THC), but the conversion process itself has also been a target of state-level legislation. [CO Department of Public Health and Environment (DPHE): Re: Production and/or Use of Chemically Modified or Converted Industrial Hemp Cannabinoids 2021; Commonwealth of Massachusetts: Hemp in Massachusetts: Faqs 2022; SB 0788 (Md.) 2022]

Hemp-derived Δ9-THC products were devised through a very simple application of the Farm Bill’s 0.3% by dry weight limit. A 10 g gummy can contain roughly 10 g × 0.3% = 0.03 g = 30 mg of Δ9-THC and still be within the legal limit. In contrast, intoxicating cannabis edibles in legal states like California and Colorado tend to contain just 5 mg or 10 mg Δ9-THC per serving. [Brangham 2014; Romine 2019] As an unavoidable consequence of the law as it is currently written, intoxicating “hemp” Δ9-THC products are widely available in most states.

There are many potential issues with this; however, the biggest is the minimal regulations imposed on these “hemp” companies, especially in comparison to the regulations of legal cannabis markets. For instance, in California [Medicinal and Adult-Use Commercial CannabisRegulations (CA) 2023], each product must be lab tested for cannabinoid potency, residual pesticides, foreign material, heavy metals, microbial impurities, mycotoxins, moisture content, and residual solvents, and packaging must be child-resistant, tamper-evident, and resealable, containing a cannabis universal symbol and numerous other pieces of information, such as a batch number and a full ingredient listing. These and similar regulations protect consumers in states with legal cannabis, but are not a requirement for hemp under the Farm Bill.

Since hemp-derived Δ9-THC products are intoxicating, many people argue that they should meet similar standards to edibles in states like California and Colorado [Hemp and Roundtable: Delta-8 2021], and be subject to the same requirements for things like warning labels and child-safe packaging. As with Δ8-THC products, it is also possible that some of the Δ9-THC in hemp products is created through cyclization, and consequently may be impacted by existing state legislation.

This study aims to investigate the hemp-derived Δ9-THC market with this in mind. In particular, we aim to determine whether companies remain within legal limits, whether the stated dosages are accurate, whether the Δ9-THC was produced by cyclization, and whether companies performed safety testing on products and made sufficient effort to prevent minors from purchasing them.

Methods

Abbreviations, acronyms, and initialisms

Acknowledgements

References

Notes

This presentation is faithful to the original, with only a few minor changes to presentation. Some grammar and punctuation was cleaned up to improve readability. In some cases important information was missing from the references, and that information was added.