Journal:Development of a gas-chromatographic method for simultaneous determination of cannabinoids and terpenes in hemp

From CannaQAWiki
Revision as of 20:08, 11 January 2021 by Shawndouglas (talk | contribs) (Saving and adding more.)
Jump to navigationJump to search
Full article title Development of a gas-chromatographic method for simultaneous determination of cannabinoids and terpenes in hemp
Journal Molecules
Author(s) Zekič, Jure; Križman, Mitja
Author affiliation(s) National Institute of Chemistry - Ljubljana, University of Ljubljana
Primary contact Email: mitja dot krizman at ki dot si
Year published 2020
Volume and issue 25(24)
Article # 5872
DOI 10.3390/molecules25245872
ISSN 1420-3049
Distribution license Creative Commons Attribution 4.0 International
Website https://www.mdpi.com/1420-3049/25/24/5872/htm
Download https://www.mdpi.com/1420-3049/25/24/5872/pdf (PDF)

Abstract

An original gas-chromatographic method has been developed for simultaneous determination of major terpenes and cannabinoids in plant samples and their extracts. The main issues to be addressed were not only the large differences in polarity and volatility between both groups of analytes, but also the need for an exhaustive decarboxylation of cannabinoid acidic forms. Sample preparation was minimized by avoiding any analyte derivatization. Acetone was found to be the most appropriate extraction solvent. Successful chromatographic separation was achieved by using a medium-polarity column. Limits of detection ranged from 120 to 260 ng/mL for terpenes and from 660 to 860 ng/mL for cannabinoids. Parallel testing proved the results for cannabinoids are comparable to those obtained from established high-performance liquid chromatography (HPLC) methods. Despite very large differences in concentrations between both analyte groups, a linear range between 1 and 100 µg/mL for terpenes and between 10 and 1500 µg/mL for cannabinoids was determined.

Keywords: cannabinoids, terpenes, cannabis, hemp, gas chromatography, capillary column

Introduction

The hemp plant (Cannabis sativa and Cannabis indica), or simply Cannabis, is a plant that has elicited much interest throughout history because of its characteristics and various possibilities of use. Over the last few years, the popularity of the Cannabis plant and its constituents has particularly increased, and a widespread recognition of its usefulness, including for medical purposes, is becoming increasingly noticeable.[1][2][3][4][5] Hemp is known to contain various groups of compounds, probably the most characteristic among them being cannabinoids. Furthermore, cannabis also contains a diverse array of terpenes and flavonoids, as well as other groups of compounds.[6][7][8][9]

Cannabinoids are probably the most studied metabolites of cannabis. Many of their beneficial effects on human health are already known, and there is also a lot of ongoing research, discovering new ones.[10] As a result, the use of cannabinoids in a wide variety of preparations is growing, which is also reflected in increased cannabis production. At the same time, a need for an efficient, routine analytical method for monitoring the cannabinoid content in plant material has arisen. A number of methods for the analysis of cannabinoids in cannabis have indeed already been developed; among various approaches, the predominant is chromatographic analysis, in particular using gas chromatography (GC)[11][12][13][14][15][16][17][18] or high-performance liquid chromatography (HPLC).[16][19][20][21][22][23][24][25][26][27]

Even though gas chromatography used to be the most common technique for analysis of cannabinoids in cannabis extracts, HPLC is currently increasingly gaining popularity in this field of application. HPLC determination of cannabinoids, in comparison to the analysis with GC, has some significant advantages: above all, it avoids the potential aggravating circumstances caused by the high temperature of analysis associated with GC, which affects the results mainly during the phase of sample injection and also indirectly during the analysis itself. Cannabinoids are found mainly in acidic forms in the plant, which eventually decarboxylate if they are exposed to raised temperature.[28] The temperature in the gas chromatograph also causes the process of decarboxylation, which is reflected in the results in two ways: we cannot separately determine acidic and decarboxylated forms of a particular cannabinoid, but only their total content. On the other hand, there is a significant probability that decarboxylation in the injector will not proceed completely.[29] Especially at higher cannabinoid concentrations, this may be reflected in apparently lower values measured and consequently irregular results of analysis. Both problems can be successfully solved by the derivatization of cannabinoids (including their acid forms) in the sample.[17][30][31][32] However, this represents an additional step that is often not desirable, because it increases probability for experimental error and prolongs analysis time, which may be a considerable drawback in terms of method suitability for routine use. With HPLC, all of these problems have been successfully avoided, as some relatively rapid, simple, and effective methods for the determination of both acidic and decarboxylated cannabinoids in cannabis samples have already been developed.[16][19][20][21][22][23][24][25][26][27][33]



References

  1. Abuhasira, R.; Shbiro, L.; Landschaft, Y. (2018). "Medical use of cannabis and cannabinoids containing products - Regulations in Europe and North America". European Journal of Internal Medicine 49: 2–6. doi:10.1016/j.ejim.2018.01.001. PMID 29329891. 
  2. Hutchison, K.E.; Bidwell, L.C.; Ellingson, J.M. et al. (2019). "Cannabis and Health Research: Rapid Progress Requires Innovative Research Designs". Value in Health 22 (11): 1289–94. doi:10.1016/j.jval.2019.05.005. PMID 31708066. 
  3. Beauchet, O. (2018). "Medical cannabis use in older patients: Update on medical knowledge". Maturitas 118: 56–9. doi:10.1016/j.maturitas.2018.10.010. PMID 30415756. 
  4. Ebbert, J.O.; Scharf, E.L.; Hurt, R.T. (2018). "Medical Cannabis". Mayo Clinic Proceedings 93: 1842–47. doi:10.1016/j.mayocp.2018.09.005. PMID 30522595. 
  5. Blasco-Benito, S.; Seijo-Vila, M.; Caro-Villalobos, M. et al. (2018). "Appraising the "entourage effect": Antitumor action of a pure cannabinoid versus a botanical drug preparation in preclinical models of breast cancer". Biochemical Pharmacology 157: 285–93. doi:10.1016/j.bcp.2018.06.025. PMID 29940172. 
  6. Booth, J.K.; Bohlmann, J. (2019). "Terpenes in Cannabis sativa - From plant genome to humans". Plant Science 284: 67–72. doi:10.1016/j.plantsci.2019.03.022. PMID 31084880. 
  7. Namdar, D.; Mazuz, M.; Ion, A. et al. (2018). "Variation in the compositions of cannabinoid and terpenoids in Cannabis sativa derived from inflorescence position along the stem and extraction methods". Industrial Crops and Products 113: 376–82. doi:10.1016/j.indcrop.2018.01.060. 
  8. Delgado-Povedano, M.M.; Callado, C.S.-C.; Priego, Capote, F. et al. (2020). "Untargeted characterization of extracts from Cannabis sativa L. cultivars by gas and liquid chromatography coupled to mass spectrometry in high resolution mode". Talanta 208: 120384. doi:10.1016/j.talanta.2019.120384. 
  9. Nuutinen, T. (2018). "Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus". European Journal of Medicinal Chemistry 157: 198–228. doi:10.1016/j.ejmech.2018.07.076. 
  10. Citti, C.; Linciano, P.; Russo, F. et al. (2019). "A novel phytocannabinoid isolated from Cannabis sativa L. with an in vivo cannabimimetic activity higher than Δ9-tetrahydrocannabinol: Δ9-Tetrahydrocannabiphorol". Scientific Reports 9: 20335. doi:10.1038/s41598-019-56785-1. 
  11. Gambaro, V.E.; Froldi, R.; Saligari, E. et al. (1995). "A simple method for analyzing cannabis by gas chromatography". Acta Toxicologica Argentina 3: 11–13. 
  12. Gibson, C.R.; Williams, R.D.; Browder, R.O. (1998). "Analysis of Hempen Ale for cannabinoids". Journal of Analytical Toxicology 22 (2): 179. doi:10.1093/jat/22.2.179. PMID 9547418. 
  13. Ross, S.A.; Mehmedic, Z.; Murphy, T.P. et al. (2008). "GC-MS analysis of the total delta9-THC content of both drug- and fiber-type cannabis seeds". Journal of Analytical Toxicology 24 (8): 715–7. doi:10.1093/jat/24.8.715. PMID 11110027. 
  14. Raharjo, T.J.; Verpoorte, R. (2004). "Methods for the analysis of cannabinoids in biological materials: A review". Phytochemical Analysis 15 (2): 79–94. doi:10.1002/pca.753. PMID 15116938. 
  15. Pellegrini, M.; Marchei, E.; Pacifici, R. et al. (2005). "A rapid and simple procedure for the determination of cannabinoids in hemp food products by gas chromatography-mass spectrometry". Journal of Pharmaceutical and Biomedical Analysis 36 (5): 939–46. doi:10.1016/j.jpba.2004.07.035. 
  16. 16.0 16.1 16.2 Gambaro, V.; Dell'Acqua, L.; Farè, F. et al. (2002). "Determination of primary active constituents in Cannabis preparations by high-resolution gas chromatography/flame ionization detection and high-performance liquid chromatography/UV detection". Analtica Chimica Acta 468 (2): 245-254. doi:10.1016/S0003-2670(02)00660-8. 
  17. 17.0 17.1 Cardenia, V.; Toschi, T.G.; Scappini, S. et al. (2018). "Development and validation of a Fast gas chromatography/mass spectrometry method for the determination of cannabinoids in Cannabis sativa L". Journal of Food and Drug Analysis 26 (4): 1283–92. doi:10.1016/j.jfda.2018.06.001. 
  18. United Nations Office on Drug and Crime (2009) (PDF). Recommended methods for the identification and analysis of cannabis and cannabis products. United Nations. ISBN 9789211482423. https://www.unodc.org/documents/scientific/ST-NAR-40-Ebook_1.pdf. Retrieved 03 April 2020. 
  19. 19.0 19.1 De Backer, B.; Debrus, B.; Lebrun, P. et al. (2009). "Innovative development and validation of an HPLC/DAD method for the qualitative and quantitative determination of major cannabinoids in cannabis plant material". Journal of Chromatography B 877 (32): 4115-4124. doi:10.1016/j.jchromb.2009.11.004. 
  20. 20.0 20.1 Aizpurua-Olaizola, O.; Omar, J.; Navarro, P. et al. (2014). "Identification and quantification of cannabinoids in Cannabis sativa L. plants by high performance liquid chromatography-mass spectrometry". Analytical and Bioanalytical Chemistry 406: 7549–60. doi:10.1007/s00216-014-8177-x. 
  21. 21.0 21.1 Zgair, A.; Wong, J.C.M.; Sabri, A. et al. (2015). "Development of a simple and sensitive HPLC–UV method for the simultaneous determination of cannabidiol and Δ9-tetrahydrocannabinol in rat plasma". Journal of Pharmaceutical and Biomedical Analysis 114: 145–51. doi:10.1016/j.jpba.2015.05.019. 
  22. 22.0 22.1 Gul, W.; Gul, S.W.; Radwan, M.M. et al. (2015). "Determination of 11 Cannabinoids in Biomass and Extracts of Different Varieties of Cannabis Using High-Performance Liquid Chromatography". Journal of AOAC International 98 (6): 1523–8. doi:10.5740/jaoacint.15-095. PMID 26651563. 
  23. 23.0 23.1 Giese, M.W.; Lewis, M.A.; Giese, L. et al. (2015). "Development and Validation of a Reliable and Robust Method for the Analysis of Cannabinoids and Terpenes in Cannabis". Journal of AOAC International 98 (6): 1503–22. doi:10.5740/jaoacint.15-116. PMID 26651562. 
  24. 24.0 24.1 Citti, C.; Ciccarella, G.; Braghiroli, D. et al. (2016). "Medicinal cannabis: Principal cannabinoids concentration and their stability evaluated by a high performance liquid chromatography coupled to diode array and quadrupole time of flight mass spectrometry method". Journal of Pharmaceutical and Biomedical Analysis 128: 201–9. doi:10.1016/j.jpba.2016.05.033. PMID 27268223. 
  25. 25.0 25.1 Patel, B.; Wene, D.; Fan, Z.T. (2017). "Qualitative and quantitative measurement of cannabinoids in cannabis using modified HPLC/DAD method". Journal of Pharmaceutical and Biomedical Analysis 146: 15–23. doi:10.1016/j.jpba.2017.07.021. 
  26. 26.0 26.1 Ciolino, L.A.; Ranieri, T.L.; Taylor, A.M. (2018). "Commercial cannabis consumer products part 2: HPLC-DAD quantitative analysis of cannabis cannabinoids". Forensic Science International 289: 438–47. doi:10.1016/j.forsciint.2018.05.033. 
  27. 27.0 27.1 Mudge, E.M.; Murch, S.J.; Brown, P.N. (2017). "Leaner and greener analysis of cannabinoids". Analytical and Bioanalytical Chemistry 409: 3153–63. doi:10.1007/s00216-017-0256-3. 
  28. Wang, M.; Wang, Y.-H.; Avula, B. et al. (2016). "Decarboxylation Study of Acidic Cannabinoids: A Novel Approach Using Ultra-High-Performance Supercritical Fluid Chromatography/Photodiode Array-Mass Spectrometry". Cannabis and Cannabinoid Research 1 (1): 262-271. doi:10.1089/can.2016.0020. 
  29. Dussy, F.E.; Hamberg, C.; Luginbühl, M. et al. (2005). "Isolation of Δ9-THCA-A from hemp and analytical aspects concerning the determination of Δ9-THC in cannabis products". Forensic Science International 149 (1): 3–10. doi:10.1016/j.forsciint.2004.05.015. 
  30. Kemp, P.M.; Abukhalaf, I.K.; Manno, J.E. et al. (2005). "Cannabinoids in Humans. I. Analysis of Δ9-Tetrahydrocannabinol and Six Metabolites in Plasma and Urine Using GC-MS". Journal of Analytical Toxicology 19 (5): 285–91. doi:10.1093/jat/19.5.285. 
  31. Steinmeyer, S.; Bregel, D.; Warth, S. et al. (2002). "Improved and validated method for the determination of Δ9-tetrahydrocannabinol (THC), 11-hydroxy-THC and 11-nor-9-carboxy-THC in serum, and in human liver microsomal preparations using gas chromatography–mass spectrometry". Journal of Chromatography B 772 (2): 239–48. doi:10.1016/S1570-0232(02)00102-2. 
  32. Leghissa, A.; Hildenbrand, Z.L.; Foss, F.W. et al. (2018). "Determination of cannabinoids from a surrogate hops matrix using multiple reaction monitoring gas chromatography with triple quadrupole mass spectrometry". Journal of Separation Science 41 (2): 459–68. doi:10.1002/jssc.201700946. 
  33. Križman, M. (2019). "A simplified approach for isocratic HPLC analysis of cannabinoids by fine tuning chromatographic selectivity". European Food Research and Technology 246: 315–22. doi:10.1007/s00217-019-03344-7. 

Notes

This presentation is faithful to the original, with only a few minor changes to presentation. Some grammar and punctuation was cleaned up to improve readability. In some cases important information was missing from the references, and that information was added.